CE 228N: Introduction to the Theory of Plasticity: Homework 0

Instructor: Dr. Narayan Sundaram*

August 8, 2025

This is a refresher homework or a sort of 'pre-homework' on tensors, solid mechanics, and elasticity.

- 1. Show that the infinitesimal strain tensor $\boldsymbol{\varepsilon}$ is linear in the displacement. You can start with either the tensorial definition $\boldsymbol{\varepsilon} = \frac{1}{2} \left(\mathbf{u} \otimes \overset{\leftarrow}{\nabla} + \overset{\rightharpoonup}{\nabla} \otimes \mathbf{u} \right)$ or use a basis representation.
- 2. The compatibility condition for the infinitesimal strain tensor can be written in a compact form as $\nabla \times \varepsilon \times \nabla = 0$. Note that due to the symmetry of ε , one does not parentheses to indicate with \times must be taken first.

Using components in a Cartesian basis and basic definitions e.g.

$$abla \equiv \hat{\mathbf{e}}_i \frac{\partial}{\partial x_i} \qquad \mathbf{a} \times \mathbf{b} \equiv \boldsymbol{\epsilon}_{ijk} a_j b_k \hat{\mathbf{e}}_i$$

show that the compact form encodes all 6 of the St.-Venant compatibility equations. Here ϵ_{ijk} is the Levi-Civita permutation symbol.

3. Invert the isotropic elastic constitutive relations

$$\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda\varepsilon_{kk}\delta_{ij}$$

$$\varepsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij}$$

^{*}Department of Civil Engineering, Indian Institute of Science

4. Consider the fourth-order symmetrizing identity tensor \mathbb{I}^s , whose action on any second-order tensor \mathbf{A} is given by

$$\mathbb{I}^s: \mathbf{A} = rac{1}{2} \left(\mathbf{A} + \mathbf{A}^T
ight)$$

Show that the components of \mathbb{I}^s in a basis are

$$I_{ijkl}^{s} = \frac{1}{2} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{kj} \right)$$

5. As shown in class, the fourth-order isotropic elastic stiffness tensor is given by

$$\mathbb{C}_{iso} = 2\mu \, \mathbb{I}^s + \lambda \, \mathbb{1} \otimes \mathbb{1}$$

where 1 is the second-order identity tensor. Show that this tensor is indeed isotropic, i.e. its components are invariant under any orthogonal change of basis.

6. Write down an expression for the fourth-order isotropic elastic compliance tensor \mathbb{S}_{iso} . Show that \mathbb{S}_{iso} and \mathbb{C}_{iso} are indeed 'inverses' of each other in the sense that

$$\mathbb{S}_{iso}: (\mathbb{C}_{iso}: \boldsymbol{\varepsilon}) = \boldsymbol{\varepsilon} \text{ and } \mathbb{C}_{iso}: (\mathbb{S}_{iso}: \boldsymbol{\sigma}) = \boldsymbol{\sigma}.$$